DASH (1) BSD General Commands Manual DASH (1)

NAME
dash — command interpreter (shell)
SYNOPSIS
dash [—aCefnuvxlimgVEb][+aCefnuvxlimgVEb][-0 option_nane][+0 option_nane]
[command file [argunent .. .]]
dash—-c [—aCefnuvxlimgVEb][+aCefnuvxlimqVEb][-0 option_nane]
[+o option_name]command_string [command_name [argunent . . .]]
dash-s [—aCefnuvxlimgqVEb][+aCefnuvxlimqVEb][-0 option_nane]
[+o option_nane][argunent .. .]
DESCRIPTION

dash is the standard command interpreter for the system. The cumemidiv ofdash is in the process of
being changed to conform with tR©SIX 1003.2 and 1003.2a specifications for the shell. This version has
mary features which makit gppear similar in some respects to the Korn shetljths not a Korn shell clone
(seeksh (1)). Only features designated BOSIX, plus a fev Berkelg/ extensions, are being incorporated
into this shell. This man page is not intended to be a tutorial or a complete specification of the shell.

Overview
The shell is a command that reads lines from either a file or the terminal, interprets them, and geaerally e
cutes other commands. It is the program that is running when a user logs into the system (although a user
can select a different shell with thesh (1) command). The shell implements a language that ha<dio-
trol constructs, a macradility that provides a variety of features in addition to data storage, alonguiith b
in history and line editing capabilities. It incorporates ynf@atures to aid interagé use and has the aakv-
tage that the interpretati language is common to both interaetind non-interactie wse (shell scripts).
That is, commands can be typed directly to the running shell or can be put into a file and the filexean be e
cuted directly by the shell.

Invocation
If no ags are present and if the standard input of the shell is connected to a terminal (ei ifffdagis set),
and the—c option is not present, the shell is considered an inteeagiell. An interactve shell generally
prompts before each command and handles programming and command efeoestlgif(as described
belov). Whenfirst starting, the shell inspects argument 0, and if it begins with a dash ‘-’, the shell is also
considered a login shellThis is normally done automatically by the system when the user first lods in.
login shell first reads commands from the filete/profile and.profile if they exist. If the ewi-
ronment ariableENVis set on entry to an interaai ell, or is set in theprofile of a login shell, the
shell next reads commands from the file namdeNN. Therefore, a user should place commands that are to
be ecuted only at login time in therofile file, and commands that areeeuted for gery interactve
shell inside th&eNVfile. To st theENVvariable to some file, place the following line in yoprofile of
your home directory

ENV=$HOME!/.shinit; export ENV
substituting for “.shinit” ap filename you wish.

If command line arguments besides the optiong leen specified, then the shell treats the first argument as
the name of a file from which to read commands (a shell script), and the remaining arguments are set as the
positional parameters of the shell ($1, $2, etc). Otherwise, the shell reads commands from its standard input.

Argument List Processing
All of the single letter options that V& a @rresponding hame can be used as an argument teotletion.
The set—o0 name is provided ¢ to the single letter option in the description kel®ecifying a dash “-”
turns the option on, while using a plus “+” disables the optibime following options can be set from the

BSD Januaryl9, 2003 1

DASH (1) BSD General Commands Manual DASH (1)

command line or with theet builtin (described later).
—a allexport Export all variables assigned to.

-C Read commands from tleonmand_st ri ng operand instead of from the
standard input. Special parameter 0 will be set fromcihvenand_nane
operand and the positional parameters ($1, $2, etc.) set from the remaining
argument operands.

—C noclobber Don't overwrite existing files with “>".

—e errext If not interactve, exit immediately if ay untested commandaiis. Theexit
status of a command is considered to Xgieitly tested if the command is
used to control aif , elif , while , or until ; or if the command is the
left hand operand of an “&&” or “||” operator.

—f noglob Disable pathname expansion.

-n noexec If not interactve, read commands but do noteeute them.This is useful for
checking the syntax of shell scripts.

—u nounset Write a message to standard error when attempting to expaaihble that
is not set, and if the shell is not interaetiexit immediately.

-V verbose The shell writes its input to standard error as it is read. Useful for debugging.

—X Xxtrace Write each command to standard error (preceded by)abéfore it is ae-
cuted. Usefufor debugging.

-l ignoreeof Ignore EOFS from input when interaate.

-i interactive Force the shell to beka interactvely.

- Make dash act as if it had beenvoked as a bgin shell.
—m monitor Turn on job control (set automatically when intenagti

—-s stdin Read commands from standard input (set automatically if no §leneants
are present). This option has no effect when set after the shell has already
started running (i.e. withet).

=V vi Enable the bilt-in vi (1) command line editor (disableskE if it has been
set).

-E emacs Enable the bilt-in emacs(1) command line editor (disabled/ if it has been
set).

-b notify Enable asynchronous notification of background job complet{aiNIM-
PLEMENTED for 4.4alpha)

Lexical Structure
The shell reads input in terms of lines from a file and breaks it up ordsvat whitespace (blanks and tabs),
and at certain sequences of characters that are special to the shell called “opératresare tw types of
operators: control operators and redirection operators (their meaning is discusse&dibav)ng is a list of
operators:

Control operators:
& && () ;; ; | |l <newline>

BSD Januaryl9, 2003 2

DASH (1) BSD General Commands Manual DASH (1)

Redirection operators:
<> > << >> <& >& <<-<>

Quoting
Quoting is used to reme te special meaning of certain characters or words to the shell, such as operators,
whitespace, ordywords. Thereare three types of quoting: matched single quotes, matched double quotes,
and backslash.

Backslash
A backslash preserves the literal meaning of the following chayrautérthe exception ofmewlindl A
backslash precedinghewlines treated as a line continuation.

Single Quotes
Enclosing characters in single quotes preserves the literal meaning of all the chares#etssiegle quotes,
making it impossible to put single-quotes in a single-quoted string).

Double Quotes
Enclosing characters within double quotes pressethe literal meaning of all characters except dollarsign
(%), backquote (), and backslash(\). The backslash inside double quotes is historically weird, and
serves to quote only the following characters:
$ "\ < newline>
Otherwise it remains literal.

Resewved Words
Resered words are words that\Weagpecial meaning to the shell and are recognized at tiarbeg of a line
and after a control operatofhe following are reserved words:

! elif fi while case
else for then { }
do done until if esac

Their meaning is discussed later.

Aliases
An alias is a name and corresponding value set usinglittee (1) builtin command.Wheneer a reserved
word may occur (see abe), and after checking for reserved words, the shell checks dhe to see if it
matches an alias. If it does, it replaces it in the input stream withlite.vfor example, if there is an alias
called “If" with the value “Is -F”, then the input:

If foobar Heturri]
would become
Is -F foobar Heturri]

Aliases provide a caenient way for naie wsers to create shorthands for commands without having to learn
how to create functions with guments. Thgcan also be used to create lexically obscure code. This use is
discouraged.

Commands
The shell interprets theokds it reads according to a language, the specification of which is outside the scope
of this man page (refer to the BNF in th@SIX1003.2 document). Essentially though, a line is read and if
the first word of the line (or after a control operator) is not a redemord, then the shell has recognized a
simple command. Otherwise, a complmmand or some other special construct maye Heen recog-
nized.

BSD January 9, 2003 3

DASH (1) BSD General Commands Manual DASH (1)

Simple Commands

If a simple command has been recognized, the shell performs the following actions:

1. Leadingwords of the form “name=value” are stripped afd assigned to the environment of the
simple command. Redirection operators and their arguments (as described below) are stripped
off and saed for processing.

2. Theremaining words are expanded as described in the section called “Expansions”, and the first
remaining word is considered the command name and the command is |odatesmaining
words are considered thegaments of the command. If no command name resulted, then the
“name=value” variable assignments recognized in item 1 affect the current shell.

3. Redirectionsire performed as described in the next section.

Redirections

Redirections are used to change where a command reads its input or sends it$roggmeral, redirections
open, close, or duplicate an existing reference to a file. \Idralbformat used for redirection is:

[n] redir-opfile

whereredir-op is one of the redirection operators mentionediptesly. Following is a list of the possible
redirections. Thén]is an gtional numberas in 3’ (not ‘[3]’), that refers to a file descriptor.

[n]> file Redirect standard output (or n) to file.

[n]>| file Same, buterride the —C option.

[n]>> file Append standard output (or n) to file.

[n]< file Redirect standard input (or n) from file.

[n1]<&n2 Duplicate standard input (or n1) from file descriptor n2.
[n]<&- Close standard input (or n).

[n1]>&n2 Duplicate standard output (or n1) to n2.

[N]>&- Close standard output (or n).

[n]<> file Open file for reading and writing on standard input (or n).
The following redirection is often called a “here-document”.

[n]<< delimiter
here-doc-text .
delimiter

All the text on successt lines up to the delimiter iswad avay and made waailable to the command on stan-
dard input, or file descriptor n if it is specified. If the delimiter as specified on the initial line is quoted, then
the here-doc-text is treated literalbtherwise the tet is subjected to parameter expansion, command substi-
tution, and arithmetic xpansion (as described in the section on “Expansions”). If the operator is “<<-"
instead of “<<”, then leading tabs in the here-doc-text are stripped.

Search and Execution

BSD

There are three types of commands: shell functions, builtin commands, and normal programs -- and the com-
mand is searched for (by name) in that arddrey each are wecuted in a different way.

When a shell function isxecuted, all of the shell positional parameters (except $0, which remains
unchanged) are set to the arguments of the shell function. The variables which are explicitly placed in the
ervironment of the command (by placing assignments to them before the function name) are made local to
the function and are set to the valuesagi Thenthe command gen in the function definition is)ecuted.

January 9, 2003 4

DASH (1) BSD General Commands Manual DASH (1)

The positional parameters are restored to their origadakg when the command completes. This all occurs
within the current shell.

Shell builtins areeecuted internally to the shell, without spawning &/ peocess.

Otherwise, if the command name do¢snatch a function or diltin, the command is searched for as & nor

mal program in the file system (as described in the next section). When a normal progresutexiethe

shell runs the program, passing the arguments and Hrer@anent to the program. If the program is not a
normal eecutable file (i.e., if it does not begin with the "magic number" whi@@ll representation is "#!",
soexecve (2) returnsENOEXEGhen) the shell will interpret the program in a subshEtie child shell will
reinitialize itself in this case, so that the effect will be as ifva sieell had been iroked to handle the ad-hoc

shell script, gcept that the location of hashed commands located in the parent shell will be remembered by
the child.

Note that preious versions of this document and the source code itself misleadingly and sporadically refer to
a dhell script without a magic number as a "shell procedure".

Path Search
When locating a command, the shell first looks to see if it has a shell function by thatTteeneit looks
for a builtin command by that name. If a builtin command is not found, oneodhimgs happen:

1. Commandiames containing a slash are simpigoaited without performing grsearches.

2. Theshell searches each entry®ATHin turn for the command. The value of tRATHvariable should
be a series of entries separated by coldech entry consists of a directory name. The current direc-
tory may be indicated implicitly by an empty directory name, or explicitly by a single period.

Command Exit Status
Each command has an exit status that can influence theidnghaf other shell commands. The paradigm is
that a command exits with zero for normal or success, and non-zero for failurepeadalse indication.
The man page for each command should indicate the various exit codes and whsgathe Additionally
the builtin commands return exit codes, as doexesuted shell function.

If a command consists entirely ainable assignments then the exit status of the command is that of the last
command substitution if gnotherwise 0.

Complex Commands
Complex commands are combinations of simple commands with control operators oredesemds,
together creating a larger complmmand. Moregyenerallya owmmand is one of the following:

e simple command

* pipeline

» list or compound-list

e compound command

» function definition

Unless otherwise stated, thritestatus of a command is that of the last simple commaecliged by the
command.

Pipelines
A pipeline is a sequence of one or more commands separated by the control operator |. The standard output
of all but the last command is connected to the standard input of the next command. The standard output of
the last command is inherited from the shell, as usual.

BSD January 9, 2003 5

DASH (1) BSD General Commands Manual DASH (1)

The format for a pipeline is:
[l commandl [| command2 ...]

The standard output of commandl is connected to the standard input of comniaed&andard input,
standard output, or both of a command is considered to be assigned by the pipeline hefedaemtion
specified by redirection operators that are part of the command.

If the pipeline is not in the background (discussed later), the shell waits for all commands to complete.

If the reserved word ! does not precede the pipeline, Xtestatus is the exit status of the last command
specified in the pipeline. Otherwise, the exit status is the logic@l @he exit status of the last command.

That is, if the last command returns zero, the exit status is 1; if the last command returns greater than zero,
the exit status is zero.

Because pipeline assignment of standard input or standard output or lestiplate before redirection, it
can be modified by redirectiorzor example:

$ commandl 2>&1 | command?2
sends both the standard output and standard error of commandl to the standard input of command2.

A ; or hewlind_terminator causes the preceding AND-OR-list (described next) teebated sequentially; a
& causes asynchronouseeution of the preceding AND-OR-list.

Note that unlie some other shells, each process in the pipeline is a child ofwblarig shell (unless it is a
shell builtin, in which case itxecutes in the current shell -ubary effect it has on the environment is
wiped).

Background Commands -- &

If a command is terminated by the control operator ampersand (&), the xefmitess the command asyn-
chronously -- that is, the shell does not wait for the command to finish bgéotdieg the next command.

The format for running a command in background is:
commandl & [command2 & ...]

If the shell is not interacté, the standard input of an asynchronous command is &gvumull

Lists -- Generally Speaking

A list is a sequence of zero or more commands separatedwlimese semicolons, or ampersands, and
optionally terminated by one of these three characfene.commands in a list argeeuted in the order tlye

are written. If command is foleed by an ampersand, the shell starts the command and immediately pro-
ceed onto the next command; otherwise it waits for the command to terminate before proceedingcto the ne
one.

Short-Cir cuit List Operators

“&&" and “||” are AND-OR list operators. “&&" executes the first command, and theweaites the second
command ifthe exit status of the first command is zero. “||” is simidar executes the second commanfl if
the exit status of the first command is nonzero. “&&” and “||” botlrehiae same priority.

Flow-Control Constructs -- if, while, for, case

BSD

The syntax of the if command is

if list
then list
[e lif list

then list 1. ..

January 9, 2003 6

DASH (1) BSD General Commands Manual DASH (1)

[elselist]
fi

The syntax of the while command is

while list
do list
done

The two lists are recuted repeatedly while the exit status of the first list is zero. The until command is simi-
lar, but has the word until in place of while, which causes it to repeat untilkthsetatus of the first list is
zero.

The syntax of the for command is

for variable [in [word ...]]
do list
done

The words folleving in are expanded, and then the listxgaited repeatedly with the variable set to each
word in turn. Omitting in word ... is equdlent to in "$@".

The syntax of the break and continue command is

break [num]
continue [num]

Break terminates the num innermost for or while loops. Continue continues with the next iteration of the
innermost loop. These are implemented as builtin commands.

The syntax of the case command is

case word in

[(Jpattern) list ;;

esac
The pattern can actually be one or more patternsSbkek Patterns described later), separated by “|” char
acters. Thé(” character before the pattern is optional.

Grouping Commands Dgether

BSD

Commands may be grouped by writing either
(list)
or
{Iist;}
The first of thesexecutes the commands in a subshdliltin commands grouped into a (list) will not

affect the current shellThe second form does not fork another shell so is slightly mbogeaf. Grouping
commands together this way allows you to redirect their output as thoygligheeone program:

{ printf" hello"; printf " world\n" ; } > greeting

Note that “}” must follav a control operator (here, “;") so that it is recognized as a reserved word and not as
another command argument.

January 9, 2003 7

DASH (1) BSD General Commands Manual DASH (1)

Functions
The syntax of a function definition is

name () command

A function definition is anxecutable statement; whereeuted it installs a function named name and returns
an exit status of zero. The command is normally a list enclosed between “{" and “}".

Variables may be declared to be local to a function by using a local commhisdshould appear as the first
statement of a function, and the syntax is

local [variable | -1
Local is implemented as a builtin command.

When a variable is made local, it inherits the initi@alue and exported and readonly flags from tugable
with the same name in the surrounding scope, if there is @tierwise, the variable is initially unsethe
shell uses dynamic scoping, so that if you enthle variable x local to function f, which then calls function g,
references to theaviable x made inside g will refer to the variable x declared inside f, not to the gémbal v
able named x.

The only special parameter that can be made local isvtdking “-” local ary shell options that are changed
via the set command inside the function to be restored to their original values when the function returns.

The syntax of the return command is
return [exitstatus]

It terminates the currentlyecuting function. Return is implemented as a builtin command.

Variables and Parameters
The shell maintains a set of parametekgparameter denoted by a name is callecd@able. Wherstarting
up, the shell turns all the environment variables into sheihbles. Ne variables can be set using the form

name=value

Variables set by the user mustvhaa rame consisting solely of alphabetics, numerics, and underscores - the
first of which must not be numeri@ parameter can also be denoted by a number or a special character as
explained beluv.

Positional Parameters
A positional parameter is a parameter denoted by a number (n > 0). The shell sets these initialiglto the v
ues of its command line arguments that feltbhe name of the shell scriptheset builtin can also be used
to set or reset them.

Special Rarameters
A special parameter is a parameter denoted by one of the following special characters. The value of the
parameter is listed next to its character.

O Expands to the positional parameters, starting from dfben the expansion occurs
within a double-quoted string ikpands to a single field with the value of each parameter
separated by the first character of fth8 variable, or by dspacéif IFS is unset.

@ Expands to the positional parameters, starting from dfben the expansion occurs
within double-quotes, each positional parametgraads as a separatgament. Ifthere
are no positional parameters, the expansion of @ generates zero arguveantbiea @
is double-quoted. What this basically means, f@meple, is if $1 is “abc” and $2 is “def
ghi”, then "$@" expands to the tvarguments:

BSD January 9, 2003 8

DASH (1) BSD General Commands Manual DASH (1)

"abc" "def ghi"
Expands to the number of positional parameters.
? Expands to the exit status of the most recent pipeline.

- (Hyphen.) Expands to the current option flags (the single-letter option names concatenated into a
string) as specified onvacation, by the set builtin command, or implicitly by the shell.

$ Expands to the process ID of thedked shell. A subshell retains the same value of $ as
its parent.

! Expands to the process ID of the most recent background commenuteel from the cur
rent shell. For a ppeline, the process ID is that of the last command in the pipeline.

0 (Zero.) Expands to the name of the shell or shell script.

Word Expansions

This clause describes the varioupansions that are performed oonrds. Notall expansions are performed
on esery word, as explained later.

Tilde expansions, parameter expansions, command substitutions, arithmetic expansions, and qaste remo
that occur within a single word expand to a single fiédds only field splitting or pathname expansion that
can create multiple fields from a singlend. Thesingle exception to this rule is the expansion of the special
parameter @ within double-quotes, as was describedabo

The order of word expansion is:

1. Tilde Expansion, Parameter Expansion, Command Substitution, Arithmetic Expansion (these all occur
at the same time).

2. FieldSplitting is performed on fields generated by step (1) unledgsheariable is null.
3. Rathname Expansion (unless sét is in effect).
4, QuoteRemwal.

The $ character is used to introduce parameter expansion, command substitution, or aritbegimne

Tilde Expansion (substituting a uses home directory)

A word beginning with an unquoted tilde character (V) is subjected to kfmmsion. Allthe characters up
to a slash (/) or the end of thend are treated as a username and are replaced with thetosee’ directory
If the username is missing (as’ifoobar), the tilde is replaced with thale of theHOME variable (the
current uses home directory).

Parameter Expansion

BSD

The format for parameter expansion is as follows:
${expression}

where expression consists of all characters until the matchingXf}{. “}” escaped by a backslash or within
a quoted string, and characters in embedded arithmetic expansions, command substitutioasabled v
expansions, are not examined in determining the matching “}".

The simplest form for parameter expansion is:
${parameter}

The value, if ap, of parameter is substituted.

January 9, 2003 9

DASH (1) BSD General Commands Manual DASH (1)

The parameter name or symbol can be enclosed in braces, which are optional except for positional parame-
ters with more than one digit or when parameter is followed by a character that could be interpreted as part of
the name. If a parameter expansion occurs inside double-quotes:

1. PRathname expansion is not performed on the results of the expansion.
2. Fieldsplitting is not performed on the results of the expansion, with the exception of @.
In addition, a parameter expansion can be modified by using one of the following formats.

${parameter:-word} Use Default ®lues. Ifparameter is unset or null, the expansion ofduis
substituted; otherwise, the value of parameter is substituted.

${parameter:=word} Assign Default dlues. Ifparameter is unset or null, the expansion ofdiis
assigned to parameteln dl cases, the finalalue of parameter is substituted.
Only variables, not positional parameters or special parameters, can be
assigned in this way.

${parameter:?[word]} Indicate Error if Null or Unset. If parameter is unset or null, the expansion of
word (or a message indicating it is unset drdis omitted) is written to stan-
dard error and the shell exits with a nonzero exit status. Otherwiseltie v
of parameter is substituted. An interaetihell need not exit.

${parameter:+word} Use Alternatie Value. Ifparameter is unset or null, null is substituted; other
wise, the expansion of word is substituted.

In the parameter expansions showrvimesly, use of the colon in the format results in a test for a parameter
that is unset or null; omission of the colon results in a test for a parameter that is only unset.

${#parameter} String Length. The length in characters of the value of parameter.

The following four \arieties of parameter expansion provide for substring processing. In each case, pattern
matching notation (se8hell Patterns), rather than regularxpression notation, is used teakiate the pat-

terns. Ifparameter islor @, the result of the expansion is unspecifigdclosing the full parametexgan-

sion string in double-quotes does not cause thewoilp four varieties of pattern characters to be quoted,
whereas quoting characters within the braces has this effect.

${parameter%word} Reme Snallest Suffix Rttern. Theword is expanded to produce a pattern.
The parameter expansion then results in parameithr the smallest portion
of the suffix matched by the pattern deleted.

${parameter%%word} Reme Lamgest Suffix Bttern. Theword is &panded to produce a pattern.
The parameter expansion then results in parametérthe largest portion of
the suffix matched by the pattern deleted.

${parameter#word} Reme Snallest Prefix Bttern. Theword is expanded to produce a pattern.
The parameter expansion then results in parameitdr the smallest portion
of the prefix matched by the pattern deleted.

${parameter##word} Reme Largest Prefix Bttern. Theword is expanded to produce a pattern.
The parameter expansion then results in parametérthe largest portion of
the prefix matched by the pattern deleted.

Command Substitution

BSD

Command substitution allows the output of a command to be substituted in place of the command name
itself. Commandubstitution occurs when the command is enclosed as follows:

$(command)

January 9, 2003 10

DASH (1) BSD General Commands Manual DASH (1)

or (“backquoted” ersion):
‘command’

The shell expands the command substitutiondegwting command in a subshell environment and replacing

the command substitution with the standard output of the command, removing sequences of one or more
mewlinds at he end of the substitution(Embeddedihewlinds kefore the end of the output are not
removed; havever, during field splitting, thg may be translated int@pacés$, depending on thealue ofIFS

and quoting that is in effect.)

Arithmetic Expansion

Arithmetic expansion pxddes a mechanism forvauating an arithmetic expression and substituting its
vaue. Theformat for arithmetic expansion is as follows:

$((expression))

The expression is treated as if it were in double-quokegpé that a double-quote inside the expression is
not treated speciallyThe shell expands all tokens in the expression for parameter expansion, command sub-
stitution, and quote remal.

Next, the shell treats this as an arithmetic expression and substitutes the value of the expression.

White Space Splitting (Field Splitting)

After parameter xpansion, command substitution, and arithmetic expansion the shell scans the results of
expansions and substitutions that did not occur in double-quotes for field splitting and multiple fields can
result.

The shell treats each character of ff® as a delimiter and uses the delimiters to split the results of parame-
ter expansion and command substitution into fields.

Pathname Expansion (File Name Generation)

Unless the—f flag is set, file name generation is performed aftetdveplitting is complete. Each word is

viewed as a series of patterns, separated by slagimesprocess of expansion replaces the word with the
names of all @sting files whose names can be formed by replacing each pattern with a string that matches
the specified patternThere are tw restrictions on this: first, a pattern cannot match a string containing a
slash, and second, a pattern cannot match a string starting with a period unless the first character of the pat-
tern is a period. The next section describes the patterns used foraotiarRe Expansion and thase

command.

Shell Patterns

BSD

A pattern consists of normal characters, which match themselves, and meta-chafhetengta-characters
are “I", “[7, “?”, and “[". These characters lose their special meaningsyfareequoted. When command
or variable substitution is performed and the dollar sign or back quotes are not double quotdetbé v
the variable or the output of the command is scanned for these charactery angl tilmmed into meta-char
acters.

An asterisk(“[') matches ay string of charactersA question mark matches yasingle character A left
braclet (“[") introduces a character class. The end of the character class is indicatét]by; af the “]”

is missing then the “[” matches a “[” rather than introducing a character dadsaracter class matchesyan

of the characters between the square l@@sckArange of characters may be specified using a minus sign.
The character class may be complemented by makingctameation point the first character of the character
class.

To include a “I” in a character class, neak the first character listed (after the “!”, if @n To include a
minus sign, mak it the first or last character listed.

January 9, 2003 11

DASH (1) BSD General Commands Manual DASH (1)

Builtins

BSD

This section lists thediltin commands which are builtin becauseytineed to perform some operation that
cant be performed by a separate process. In addition to these, therevenad séher commands that may be
builtin for efficiency (e.g. printf (1), echo (1), test (1), etc).

true A null command that returns a O (true) exit value.
.file The commands in the specified file are read aacliged by the shell.

alias [hanme[=string ...]]
If name=st ri ng is specified, the shell defines the ali@re with valuest ri ng. If justnane is
specified, the value of the aliaane is printed. With no arguments, thalias builtin prints the
names and values of all defined aliases (sedias).

bg [ob]
Continue the specified jobs (or the current job if no jobs &emyin the background.

command Fp][-v][-V]comand [arg . . .]
Execute the specified command but ignore shell functions when searching(Tdristis useful when
you hae a &ell function with the same name as a builtin command.)

—-p search for command usingP&ATHthat guarantees to find all the standard utilities.

-V Do not &ecute the command but search for the command and print the resolution of the com-
mand search. This is the same as the type builtin.

-v Do not &ecute the command but search for the command and print the absolute pathname of
utilities, the name for builtins or the expansion of aliases.

cd-

cd [-LP] [directory]

Switch to the specified directory (aeft HOME If an entry fotCDPATHappears in the @ronment

of thecd command or the shelaviableCDPATHSs set and the directory name does ngfitb&vith a
slash, then the directories listed@DPATHwill be searched for the specified directohe format

of CDPATHis the same as that ®ATH If a single dash is specified as the argument, it will be
replaced by the value @LDPWDThe cd command will print out the name of the directory that it
actually switched to if this is different from the name that the uaee grhese may be didrent
either because theDPATHmMechanism was used or because tigeraent is a single dasfihe —P
option causes the physical directory structure to be used, that is, all symbolic links ardrésolv
their respectie values. The-L option turns dfthe effect of ap preceding—P options.

echo [-n]args. ..
Print the arguments on the standard output, separated by spaces. Unlessfit®n is present, a
newline is output following the arguments.

If any of the following sequences of characters is encountered during output, the sequence is not out-
put. Insteadthe specified action is performed:

\b A backspace character is output.

\c Subsequent output is suppresséthis is normally used at the end of the last argument to
suppress the trailing newline tretho would otherwise output.

\f Output a form feed.

Januaryl9, 2003 12

DASH (1) BSD General Commands Manual DASH (1)

\n Output a newline character.

\r Output a carriage return.

\t Output a (horizontal) tab character.
\v Output a vertical tab.

\Odigits

Output the character whose value igegiby zero to three octal digits. If there are zero
digits, a nul character is output.

\\ Output a backslash.
All other backslash sequences elicit undefined behaviour.

evdstring
Concatenate all the arguments with spaces. Then re-parsgeantee¢he command.

exec [command arg . . .]
Unless command is omitted, the shell process is replaced with the specified program (which must be
a real program, not a shell builtin or functiomny redirections on thexec command are maekl
as permanent, so that yhare not undone when tlexec command finishes.

exit [exi t st at us]
Terminate the shell proces#f exi t st at us is given it is used as the exit status of the shell; other
wise the exit status of the preceding command is used.

exportnane

export —p
The specified names are exported so that #i# appear in the environment of subsequent com-
mands. Thenly way to un-export a variable is to unsetTitie shell allows the value of a variable to

be set at the same time it is exported by writing
export name=value

With no arguments the export command lists the names ofpalited \ariables. Vith the —p option
specified the output will be formatted suitably for non-intevaatse.

fc[-e editor][first [last]]
fc =l [-nr][first [last]]
fc —s [ol d=new] [first]
Thefc builtin lists, or edits and rexecutes, commands previously entered to an intexastiell.

—-e editor
Use the editor named by editor to edit the commaiithe editor string is a command name,
subject to search via theATH variable. Thevaue in the FCEDIT variable is used as a
default when-e is not specified.If FCEDIT is null or unset, the value of tiEDITOR vari-
able is used. IEDITORIs null or unseted(1) is used as the editor.

=1 (ell)
List the commands rather tharvaking an editor on themThe commands are written in the
sequence indicated by the first and last operands, as affectad, lyth each command pre-
ceded by the command number.

-n Suppress command numbers when listing with -I.

BSD January 9, 2003 13

DASH (1) BSD General Commands Manual DASH (1)
-r Reverse the order of the commands listed (with) or edited (with neither-I nor -s).
-s Re-&ecute the command withoutvioking an editor.
first
last Select the commands to list or edithe number of previous commands that can be accessed
are determined by the value of tHESTSIZE variable. Thevalue of first or last or both are
one of the following:
[+]number
A positive rumber representing a command number; command numbers can be dis-
played with the-| option.
—-number
A negdive cecimal number representing the command that wesueed number of
commands previouslyFor example, -1 is the immediately previous command.
string A string indicating the most recently entered command that begins with that difitige
old=nev operand is not also specified witts, the string form of the first operand cannot
contain an embedded equal sign.
The following environment variables affect thexaution of fc:
FCEDIT Name of the editor to use.
HISTSIZE The number of previous commands that are accessible.
fg [j ob]

Move the specified job or the current job to the foreground.

getoptsopt stri ng var

BSD

ThePOSIXgetopts command, not to be confused with Bell Labs-derived getopt (1).

The first agument should be a series of letters, each of which may be optionally followed by a colon
to indicate that the option requires agwanent. Thevariable specified is set to the parsed option.

The getopts command deprecates the oldgtopt (1) utility due to its handling of guments
containing whitespace.

The getopts builtin may be used to obtain options and theguanents from a list of parameters.
When irvoked, getopts places the value of the next option from the option string in the list in the
shell variable specified byar and its ind& in the shell ariableOPTIND. When the shell is iroked,
OPTIND is initialized to 1. For each option that requires an argument, gie¢opts builtin will

place it in the shellariableOPTARG If an gption is not allowed for in theptstring thenOPTARG

will be unset.

optstringis a string of recognized option letters (getopt (3)). If a letter is followed by a colon,
the option is expected to Y& a1 aagument which may or may not be separated from it by white
space. Ifan option character is not found whespected,getopts will set the \ariablevar to a

“?". getopts will then unsefOPTARGNd write output to standard errdy specifying a colon as
the first character afptstringall errors will be ignored.

A nonzero value is returned when the last option is reacHetiere are no remaining guments,
getopts will setvar to the special option, “--", otherwise, it will sedr to “?".

The following code fragment showswmne might process thegments for a command that can
take the optionga] and [b], and the optionc], which requires an argument.

January 9, 2003 14

DASH (1) BSD General Commands Manual DASH (1)

while getopts abc: f

do
case $fin
a|b) flag=%f;
C) carg=$OPTARG;;
\?) echo $USAGE; exit 1;;
esac
done

shift ‘expr $OPTIND - 1°
This code will accept arof the following as equalent:

cmd —acarg file file

cmd —a —c arg file file
cmd —carg -a file file
cmd —a —carg —— file file

hash-rv conmmand
The shell maintains a hash table which remembers the locations of comrifditlllsio aguments
whatsoeer, the hash command prints out the contents of this table. Entries whigh hat been
looked at since the lasti command are marked with an asterisk; it is possible for these entries to be
invalid.

With aguments, thdnash command remes the specified commands from the hash table (unless
they are functions) and then locates thelvith the —v option, hash prints the locations of the com-
mands as it finds thenThe —r option causes the hash command to delete all the entries in the hash
table except for functions.

pwd [-LP]
builtin command remembers what the current directory is rather than recomputing it eachhime.
males it faster Howeva, if the current directory is renamed, the builtersion ofpwd will continue
to print the old name for the directoryhe —P option causes the physical value of the curresrkw
ing directory to be shown, that is, all symbolic links are resolved to their respeaties. The-L
option turns dfthe effect of ap preceding—P options.

read [-p pronpt][-r]variable[. . .]
The prompt is printed if the.p option is specified and the standard input is a termiflaén a line is
read from the standard input. The trailingMiee is deleted from the line and the line is split as
described in the section on word splitting ady@nd the pieces are assigned to the variables in.order
At least one ariable must be specified. If there are more pieces than variables, the remaining pieces
(along with the characters IRS that separated them) are assigned to the &agthle. Ifthere are
more variables than pieces, the remainiagables are assigned the null strinthe read builtin
will indicate success unless EOF is encountered on input, in which case failure is returned.

By default, unless ther option is specified, the backslash “\" acts as an escape chacact&ng
the following character to be treated literallj a backslash is follwed by a newline, the backslash
and the newline will be deleted.

readonlynane

readonly—p
The specified names are marked as read salhat the cannot be subsequently modified or unset.
The shell allows the value of a variable to be set at the same time it is marked read only by writing

readonly name=value

BSD January 9, 2003 15

DASH (1) BSD General Commands Manual DASH (1)

With no aguments the readonly command lists the names of all read anfbles. Vith the —p
option specified the output will be formatted suitably for non-interacte.

printf f or mat [argunments . . .]
printf formats and prints its arguments, after the first, under control éfctheat . Thef or nat
is a character string which contains three types of objects: plain characters, which are simply copied
to standard output, character escape sequences which eegemband copied to the standard output,
and format specifications, each of which causes printing of the next sueegsgunent .

Thear gunent s after the first are treated as strings if the corresponding format is lgjtbear s;
otherwise it is ealuated as a C constant, with the following extensions:

» Aleading plus or minus sign is allowed.
» If the leading character is a single or double quote, the value Assttiecode of the ne
character.

The format string is reused as often as necessary to satisfy gluerent s. Any exra format speci-
fications are wsluated with zero or the null string.

Character escape sequences are in backslash notation as defiRetX8.159-1989 (ANSI C89).
The characters and their meanings are as follows:

\a Write a <bell> character.

\b Write a <backspace> character.

\f Write a <form-feed> character.

\n Write a <new-line> character.

\r Write a <carriage return> character.
\t Write a <tab> character.

\v Write a <vertical tab> character.

\\ Write a backslash character.

\ num Write an 8-bit character who#eCll vaue is the 1-, 2—, or 3—digit octal number
num

Each format specification is introduced by the percent chara@te?) (' The remainder of the format
specification includes, in the following order:

Zero or more of the following flags:

A ‘# character specifying that the value should be printed italierhative form”.
For b, ¢, d, and s formats, this option has nofeft. For theo format the precision
of the number is increased to force the first character of the output string to a zero.
For thex (X) format, a non-zero result has the strihg (0X) prepended to it.
For e, E, f, g, and Gformats, the result will alays contain a decimal pointyen if
no digits follov the point (normallya decimal point only appears in the results of
those formats if a digit follows the decimal poinffor g and G formats, trailing
zeros are not remred from the result as tlgavould otherwise be.

- A minus sign ‘=’ which specifieeft adjustmenbf the output in the indicated field;

+ A ‘+' character specifying that there shouldajs be a sign placed before the num-
ber when using signed formats.

BSD January 9, 2003 16

DASH (1)

BSD

BSD General Commands Manual DASH (1)

A space specifying that a blank should be left before a pesitimber for a signed
format. A'+' overrides a space if both are used;

0 A zero ‘0’ character indicating that zero-padding should be used rather than blank-
padding. A=’ overrides a ‘0’ if both are used;

Field Width:
An optional digit string specifying feeld width if the output string has fewer characters than
the field width it will be blank-padded on the left (or right, if the left-adjustment indicator
has been gen) to male up he field width (note that a leading zero is a flag, but an embed-
ded zero is part of a field width);

Precision:
An optional period,."’, followed by an optional digit string giving precisionwhich speci-
fies the number of digits to appear after the decimal poing fordf formats, or the maxi-
mum number of bytes to be printed from a stribgafds formats); if the digit string is
missing, the precision is treated as zero;

Format:
A character which indicates the type of format to use (omkoofkXfwEgGhcs).

A field width or precision may bél‘instead of a digit string. In this case angunent supplies
the field width or precision.

The format characters and their meanings are:

diouXx Thear gunent is printed as a signed decimal (d or i), unsigned octal, unsigned deci-
mal, or unsigned hexadecimal (X or x), respastyi

f The ar gunent is printed in the style [-]Jdddddd where the number ofsgd&ter the
decimal point is equal to the precision specification for theraent. Ifthe precision is
missing, 6 digits are gén; if the precision is »licitly 0, no digits and no decimal
point are printed.

eE The ar gunrent is printed in the style [-]dddde+dd where there is one digit before
the decimal point and the number after is equal to the precision specification for the
argument; when the precision is missing, 6 digits are produced. An upper-case E is
used for an ‘E’ format.

gG Thear gunent is printed in styld or in stylee (E) whichever gives full precision in
minimum space.

b Characters from the stringr gunent are printed with backslash-escape sequences
expanded.

The following additional backslash-escape sequences are supported:

\c Causeglash to ignore ag remaining characters in the string operand contain-
ing it, ary remaining string operands, andyaalditional characters in the for
mat operand.

\O num Write an 8-bit character whosesCll value is the 1-, 2—, or 3-digit octal

numbemum
c The first character ar gunent is printed.
S Characters from the strirgy gunent are printed until the end is reached or until the

number of bytes indicated by the precision specification is reached; if the precision is
omitted, all characters in the string are printed.

January 9, 2003 17

DASH (1)

BSD General Commands Manual DASH (1)

% Print a ‘%’; no argument is used.

In no case does a non-existent or small field width cause truncation of a field; paddmglaie
only if the specified field width exceeds the actual width.

set [{ —options | +options | --} Jarg

Theset command performs three different functions.
With no arguments, it lists the values of all shell variables.

If options are gien, it sets the specified option flags, or clears them as described in the section called
Argument List Processing As a gecial case, if the option is -0 or +0 and no argument is supplied,
the shell prints the settings of all its optiorithe option is -0, the settings are printed in a human-
readable format; if the option is +0, the settings are printed in a format suitable for reinput to the shell
to affect the same option settings.

The third use of the set command is to set the values of thesghsitional parameters to the speci-
fied ags. 10 change the positional parameters without changingaptions, use “--" as the first
argument to set. If no gs are present, the set command will clear all the positional parameters
(equivalent to eecuting “shift $#".)

shift [n]

Shift the positional parameters n timgsshift sets the value &1 to the value o$2, the value of
$2to the value o3, and so on, decreasing the values#fby one. If n is greater than the number of
positional parametershift will issue an error message, and exit with return status 2.

testexpr essi on

[expression]

BSD

Thetest utility evaluates the expression and, if itakiates to true, returns a zero (true) exit status;
otherwise it returns 14fse). Ifthere is no expression, test also returns 1 (false).

All operators and flags are separate arguments teshe utility.
The following primaries are used to construct expression:

-b file True iff i | e exists and is a block special file.

-c file True iff i | e exists and is a character special file.
-d file True iff i | e exists and is a directory.

-e file True iff i | e exists (regardless of type).

-f file True iff i | e exists and is a regular file.

-g file True iff i | e exists and its set group ID flag is set.
-h file True iff i | e exists and is a symbolic link.

-k file True iff i | e exists and its stickhit is set.

-n string True ifthe length ot ri ng is nonzero.

-p file True iff i | e is a named pipeRIFO).

-r file True iff i | e exists and is readable.

-s file True iff i | e exists and has a size greater than zero.

-t file_descriptor
True if the file whose file descriptor numberfisl e_descri pt or is open and is
associated with a terminal.

January 9, 2003 18

DASH (1)

BSD

BSD General Commands Manual DASH (1)

-u file True iff i | e exists and its set user ID flag is set.

-wfile True iff i | e exists and is writableTrue indicates only that the write flag is ofhe
file is not writable on a read-only file systewerif this test indicates true.

-x file True iff i | e exists and is xecutable. Tue indicates only that thexeeute flag is on.
If fil eis a directorytrue indicates thdti | e can be searched.

-z string True if the length obt ri ng is zero.

-L file True iff i | e exists and is a symbolic link. This operator is retained for compatibil-
ity with previous versions of this prograno not rely on its existence; useh
instead.

-Ofile True iff i | e exists and its owner matches the effeetiser id of this process.

-G file True iff i | e exists and its group matches the effeetiyoup id of this process.

-S file True iff i | e exists and is a socket.

filel -nt file2
Trueiffil el andfil e2 existandfil el is newertharii | e2.

filel —ot file2
Trueiffil el andfi |l e2 existandfi | el is older tharfi |l e2.

filel —ef file2
True iffi | el andfi | e2 exist and refer to the same file.

string True ifstri ng is not the null string.

sl = s2 True if the strings 1 ands?2 are identical.

sl = s2 Trueif the strings 1 ands?2 are not identical.

sl < s2 True if strings1 comes before 2 based on the ASCII value of their characters.

sl > s2 True if strings1 comes aftes2 based on the ASCII value of their characters.

nl —-eq n2 True if the integeral andn2 are algebraically equal.

nl -ne n2 True if the integeral andn2 are not algebraically equal.

nl —-gt n2 True if the integenl is algebraically greater than the integ@r.

nl —-ge n2 True if the integenl is algebraically greater than or equal to the integer

nl -It n2 True if the integenl is algebraically less than the integer.

nl -le n2 True if the integenl is algebraically less than or equal to the integr

These primaries can be combined with the following operators:

expr essi on

True ifexpr essi on is false.

expressionl -a expression2

True if bothexpr essi onl andexpr essi on2 are true.

expressionl -o expression2

True if eitherexpr essi onl orexpr essi on2 are true.

(expression)

True if expression is true.

January 9, 2003 19

DASH (1) BSD General Commands Manual DASH (1)

The —a operator has higher precedence than-tbheperator.

times Print the accumulated user and system times for the shell and for processes run from thiéeshell.
return status is 0.

trap [acti on signal .. .]
Cause the shell to parse anaaite action when anof the specified signals are regsl. Thesig-
nals are specified by signal number or as the name of the sifjsalgnal is 0 or EXIT, the action
is executed when the shelkits. acti on may be empty’(), which causes the specified signals to
be ignored.With act i on omitted or set to ‘-’ the specified signals are set to theaultefction.
When the shell forks 6f subshell, it resets trappedutbnot ignored) signals to the default action.
Thetrap command has no effect on signals that were ignored on entry to thetsdyell. without
ary arguments cause it to write a list of signals and their associated action to the standard output in a
format that is suitable as an input to the shell that aehiae same trapping results.

Examples:
trap

List trapped signals and their corresponding action
trap 7 INT QUIT tstp 30

Ignore signals INT QUIT TSTP USR1
trap date INT

Print date upon receiving signal INT

type [name . . .]
Interpret each name as a command and print the resolution of the command search. Possible resolu-
tions are: shell &word, alias, shell biltin, command, tracked alias and not fourkebr aliases the

alias expansion is printed; for commands and tracked aliases the complete pathname of the command
is printed.
ulimit[-H | -S][—-a | —tfdscmlpn [val uel]
Inquire about or set the hard or soft limits on processes orwdimis. Thechoice between hard
limit (which no process is aleed to violate, and which may not be raised once it has baendd)

and soft limit (which causes processes to be signaleddi necessarily killed, and which may be
raised) is made with these flags:

-H set or inquire about hard limits

-S set or inquire about soft limits. If neitheH nor —S is specified, the soft limit is dis-
played or both limits are set. If both are specified, the last one wins.

The limit to be interrogated or set, then, is chosen by specifyingremof these flags:

-a shaw all the current limits

-t shaw or st the limit on CPU time (in seconds)

—f shaw or st the limit on the largest file that can be created (in 512-byte blocks)

—-d shaw or st the limit on the data segment size of a process (in kilobytes)

-s shaw or st the limit on the stack size of a process (in kilobytes)

-C shav or st the limit on the largest core dump size that can be produced (in 512-byte
blocks)

BSD January 9, 2003 20

DASH (1) BSD General Commands Manual DASH (1)

-m shav or st the limit on the total pfsical memory that can be in use by a process (in
kilobytes)

- shav or st the limit on hav much memory a process can lock witiock (2) (in kilo-
bytes)

-p shaw or set the limit on the number of processes this user camdane time

-n shaw or set the limit on the number files a process careltpen at once

-r shaw or set the limit on the real-time scheduling priority of a process

If none of these is specified, it is the limit on file size that isvehar set. If value is specified, the
limit is set to that number; otherwise the current limit is displayed.

Limits of an arbitrary process can be displayed or set usimgyotl (8) utility.

umask pask]
Set the value of umask (saenask(2)) to the specified octaklue. Ifthe argument is omitted, the
umask value is printed.

unalias [-a] [nane]
If nane is specified, the shell remes that alias. If—a is specified, all aliases are reved.

unset [-fv] nane
The specified variables and functions are unset arcported. If -f or —v is specified, the corre-
sponding function or variable is unset, respebti If a given name corresponds to both ariable
and a function, and no options areeni, only the variable is unset.

wait [j ob]
Wait for the specified job to complete and return tkié tatus of the last process in the.jdbthe
argument is omitted, wait for all jobs to complete and return an exit status of zero.

Command Line Editing

Whendash is being used interagtly from a terminal, the current command and the command history (see
fc in Builtins) can be edited using vi-mode command-line editing. This mode uses commands, described
belov, amilar to a subset of those described in the vi man page. The consetrna vi enables vi-

mode editing and place sh into vi insert modith vi-mode enabled, sh can be switched between insert
mode and command mode. The editor is not described in full here, but will be in a later dodtisénti-

lar to vi: typingESCwill throw you into command VI command modElitting [Meturri_while in command

mode will pass the line to the shell.

EXIT STATUS

Errors that are detected by the shell, such as a syntaxwittarause the shell to exit with a non-zerdgte
status. Ifthe shell is not an interaeé shell, the a&ecution of the shell file will be aborted. Otherwise the
shell will return the exit status of the last commareceted, or if the exit builtin is used with a numeric
argument, it will return the argument.

ENVIRONMENT

BSD

HOME Set automatically bylogin (1) from the uses login directory in the password file
(passwd (4)). This environment variable also functions as the defagliraent for the cd
builtin.

PATH The default search path foxegutables. Sethe abee ®ctionPath Search

CDPATH The search path used with the cd builtin.

January 9, 2003 21

DASH (1) BSD General Commands Manual DASH (1)

MAIL The name of a mail file, that will be checked for thevakrof new mail. Owerridden by
MAILPATH

MAILCHECKThe frequeng in seconds that the shell checks for thevatrof mail in the files specified by
theMAILPATHor theMAIL file. If set to 0, the check will occur at each prompt.

MAILPATH A colon “” separated list of file names, for the shell to check for incoming riaik ervi-
ronment setting\@rrides theMAIL setting. Therés a maximum of 10 mailboxes that can be
monitored at once.

PS1 The primary prompt string, which defaults to “$ ", unless you are the supdrusdiich case
it defaults to “# .

PS2 The secondary prompt string, which defaults to “> .

PS4 Output before each line whereeution trace (set -x) is enabled, defaults to “+ ”.

IFS Input Field Separators. This is normally setdpacé] fall] and hewlinel]l See theWhite

Space Splittingsection for more details.

TERM The default terminal setting for the shell. This is inherited by children of the shell, and is used
in the history editing modes.

HISTSIZE The number of lines in the history buffer for the shell.
PWD The logical value of the current working directoihis is set by thed command.
OLDPWD The previous logical value of the current working directdrljis is set by thed command.
PPID The process ID of the parent process of the shell.

FILES
$HOME/.profile
letc/profile

SEE ALSO

csh (1), echo (1), getopt (1), ksh (1),login (1), printf (1),test (1), getopt (3), passwd (5),
environ (7),sysctl (8)

HISTORY
dash is a POSIX-compliant implementation of /bin/sh that aims to be as small as podsititeis a direct
descendant of the NetBSD version of ash (the Almquist SHell), ported to Linux in early t99@s
renamed talash in 2002.

BUGS
Setuid shell scripts should beoided at all costs, as thare a significant security risk.

PS1, PS2, and PS4 should be subject to parameter expansion before being displayed.

BSD January 9, 2003 22

